TR-MAC: An Energy-Efficient MAC protocol for Wireless Sensor Networks
Sarwar Morshed and Geert Heijenk
University of Twente, The Netherlands.
{s.morshed, geert.heijenk}@utwente.nl

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states

1. Why a new energy-efficient MAC protocol?
- Exploit Transmitted Reference (TR) modulation used in physical layer & minimize drawbacks
- Transmitter or Receiver-driven Energy driven protocol
- Using energy harvesting gives new requirement

2. Transmitted Reference (TR) modulation
- Transmitter sends both modulated and unmodulated signals separated in frequency over the wireless channel
- Receiver restores the signal by self-correlation with a delayed or frequency shifted version of itself
- Multiple access using different offsets
- Faster synchronization and signal acquisition
- More transmission power is required for individual bits!

3. TR-MAC protocol design: Three states